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Monoids

Definition

A pair (M,+) of a set M and a binary operation (+) is a monoid if the
following conditions hold:

▶ M is closed under (+),

▶ (+) is commutative and associative, and

▶ M exhibits an identity element 0 ∈ M under (+).

Examples (Monoids)

▶ (N0,+), the nonnegative integers under addition.

▶ (N, ·), the positive integers under multiplication.

▶ (Q≥0,+), the nonnegative rational numbers under addition.
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Special Monoids

Definition

Let (M,+) be a monoid with identity 0, and let a, b, c ∈ M and n ∈ N.
▶ M is cancellative if a+ c = b + c implies a = b.

▶ M is torsion-free if na = nb (repeated addition) implies that a = b.

▶ M is linearly ordered if there exists a total order (⪯) on M such
that having a ⪯ b implies a+ c ⪯ b + c.

▶ N is a submonoid of another monoid M if 0 ∈ N ⊆ M and N is
closed under (+).

Unless specified otherwise, we tacitly assume that all monoids that we
shall deal with are cancellative.

Examples (More Monoids)

▶ (N0,+) is cancellative, torsion-free, and linearly ordered.

▶ ({0, 3, 5, 6} ∪ N≥8,+) is a submonoid of (N0,+), thus inheriting its
properties of being cancellative, torsion-free, and linearly ordered.

▶ (Z/6Z,+) is cancellative but not torsion-free, as 1 + 1 ≡6 4 + 4.
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Semirings

Definition

A triple (R,+, ·) is a semiring if the following conditions hold:

▶ (R,+) is a monoid with its identity denoted by 0,

▶ (R \ {0}, ·) is a semigroup with an identity denoted by 1 with 1 ̸= 0,

▶ a · (b + c) = a · b + a · c for all a, b, c ∈ R.

A subset R ′ of a semiring (R,+, ·) is a subsemiring if (R ′,+, ·) is a
semiring when (+) and (·) are restricted to the domain of R ′.

Examples (Semirings)

▶ (N0,+, ·) is a semiring. In fact, it is a subsemiring of (Z,+, ·).
▶ (Q≥0,+, ·) is a subsemiring of (R≥0,+, ·).
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Integral Domains

Definition

A triple (R,+, ·) is an integral domain if the following conditions hold:

▶ (R,+) is an abelian group,

▶ (R \ {0}, ·) is a cancellative monoid. In other words, (R \ {0}, ·) has
no zero divisors, and

▶ a · (b + c) = a · b + a · c for all a, b, c ∈ R.

Examples (Integral Domains)

▶ Z, Q, and R are all integral domains under the standard (+) and (·).
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Semidomains

Definition

A semidomain is a subsemiring of an integral domain.

One may think of semidomains as integral domains in which additive
inverses are no longer required for all elements.

Examples (Semidomains)

▶ (N0,+, ·) is a semidomain as it is a semiring embedded under the
integral domain (Z,+, ·).

▶ (N0[x
±1],+, ·) is the semidomain containing all Laurent polynomials

of the form f =
∑n

i=0 cix
ki where ci ∈ N0 and ki ∈ Z for all i .

▶ Similarly, (Z[x±1],+, ·) is the integral domain consisting of all
Laurent polynomials with coefficients in Z.
Observe that (N0[x

±1],+, ·) is a subsemiring of the integral domain
(Z[x±1],+, ·), so it is a semidomain.
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Special Elements of Semidomains

Definition

Let S be any semidomain with s, a, b, c ∈ S .

▶ Denote the identities of the additive monoid (S ,+) and the
multiplicative monoid (S \ {0}, ·) by 0 and 1, respectively.

▶ c is an additive unit if there exists −c ∈ S such that c +−c = 0.

▶ s is an additive irreducible if s is not an additive unit and s = a+ b
implies that either a or b is an additive unit.

▶ c is a multiplicative unit if there exists c−1 ∈ S such that cc−1 = 1.

▶ s is a multiplicative irreducible if s is not a multiplicative unit and
having s = ab implies that either a or b is a multiplicative unit.

We denote these sets as U+(S), A+(S), S
×, and A (S), respectively.
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Special Semidomains

We are interested in the properties of the additive monoid (S ,+) of a
given semidomain S .

Definition

▶ S is additively reduced if 0 is the only additive unit of S .

▶ S is additively atomic if (S ,+) is atomic, so that all s ∈ S \ U+(S)
can be written as the sum of finitely many additive irreducibles.

▶ S is additively Furstenberg if (S ,+) is Furstenberg, so that all
s ∈ S \ U+(S) has some additive irreducible additively dividing it.

Examples (More Semidomains)

▶ N0 is a semidomain with A+(S) = {1}, S× = {1}, and A (S) = P.
Furthermore, N0 is additively reduced, additively atomic, and so
additively Furstenberg.

▶ N0[x
±1] is a semidomain with A+(S) = S× = {xk | k ∈ Z}, while

A (S) is very complicated. Further, N0[x
±1] is additively reduced,

additively atomic, and so additively Furstenberg.
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Motivation

▶ The Goldbach conjecture was initially presented in a letter from
Christian Goldbach to Leonhard Euler (1742), hypothesizing every
even integer greater than 2 can be expressed as the sum of two
positive prime numbers.

▶ While still an open problem, progress has been made in other
domains other than the original N0.

▶ Rather recently, Liao and Polo (2023) showed an analogue of the
Goldbach conjecture over the semidomain N0[x

±1].

▶ Kaplan and Polo (2023) have then extended this result to all
additively reduced and additively atomic Laurent polynomial
semidomains S [x±1] satisfying A+(S) = S×.

In this talk, we will try to extend both of the last two theorems presented
by Liao-Polo and Kaplan-Polo to more general structures – namely, group
semidomains.
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Group Semidomains

Definition

Let S be a semidomain and let G be a torsion-group abelian. We define
the group semidomain S [G ] as containing all polynomial expressions of
the form

f (x) =
n∑

i=0

six
gi

such that si ∈ S , and gi ∈ G for 0 ≤ i ≤ n and gi < gi+1 for all 0 ≤ i < n.

We require G to be torsion-free and abelian because of Levi’s Theorem:

Theorem (Levi, 1913)

For an abelian group G , the following conditions are equivalent.

▶ G is torsion-free.

▶ G can be turned into a linearly ordered monoid.

Example (Group Semidomains)

▶ Let S be a semidomain. Then S [x±1] = S [Z].
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Support

Definition

Let S [G ] be a group semidomain. For any polynomial expression
f =

∑n
i=0 six

gi ∈ S [G ], define the support of f , which we denote by
supp(f ), as

supp(f ) := {gi | si ̸= 0, 0 ≤ i ≤ n}.

In this way, note that for f ∈ S [G ], the element f has |supp(f )| terms.

Examples (Support)

In N0[x
±1], consider the polynomials

f = 1 + x + 2x3 + x4 and

g = 2 + 4x + x3 + 2x4.

Observe that supp(f ) = supp(g) = {0, 1, 3, 4}.
Additionally, note that f is multiplicatively irreducible while g is not, as
g = (1 + 2x)(2 + x3) and neither 1 + 2x nor 2 + x3 are multiplicative
units.
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Our First Main Result

Theorem (L–M–Z, 202?)

Let S be an additively reduced and additively Furstenberg semidomain,
and let G be an abelian torsion-free group. The following statements are
equivalent.

1. A+(S) = S×.

2. Every f ∈ S [G ] with |supp(f )| > 1 can be expressed as the sum of at
most two multiplicative irreducibles.

3. There exists k ∈ N such that every f ∈ S [G ] with |supp(f )| > 1 can
be expressed as the sum of at most k multiplicative irreducibles.

Moreover, if any of the previous statements hold and f ∈ S [G ] is not of
one of the following forms:

(a) f = s0x
g0 + s1x

g1 , where either s0 ∈ S× or s1 ∈ S×, or

(b) f = s0x
g0 + s1x

g1 + s2x
g2 , where either s0, s1, s2 ∈ S×,

then f can be decomposed into exactly two multiplicative irreducible
summands in S [G ].
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Furstenbergness and Atomicity

Recall the following definitions.

▶ S is additively atomic if (S ,+) is atomic, so that all s ∈ S \ U+(S)
can be written as the sum of finitely many additive irreducibles.

▶ S is additively Furstenberg if (S ,+) is Furstenberg, so that all
s ∈ S \ U+(S) has some additive irreducible additively dividing it.

Additive atomicity automatically implies additive Furstenbergness, but are
they truly different criteria?

▶ A construction of Lin–Rabinovitz–Zhang (2023) yields a monoid that
is Furstenberg but not atomic.

▶ Constructions of Gotti–Polo (2023) and Fox–Goel–Liao (2023) yield
semidomains that are multiplicatively Furstenberg but not
multiplicatively atomic.

What about additive Furstenbergness and additive atomicity?
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Concluding Remarks on Furstenbergness

We construct an infinite class of semidomains which are additively
Furstenberg but not additively atomic.

Proposition (L–M–Z, 202?)

For primes p, q ∈ P≥3 satisfying q
p
> 1+

√
5

2
, set

(κp,q, λp,q) :=

(
q

p + q
,

q2

p2 + pq

)
.

Then the semidomain Sp,q := N0 [κp,q, λp,q] is additively Furstenberg but
not additively atomic. In particular, A+(Sp,q) = {κn

p,q : n ∈ N0}.

Highlights of the Proposition

S3,5 = N0[
5
8
, 25
24
] and S7,13 = N0[

13
20
, 169
140

] are additively Furstenberg but not
additively atomic.

Observe that p and q can become arbitrarily large. For example, putting
S457,977 = N0[

977
1434 ,

954529
655338

] works too.
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End of Presentation

THANK YOU!
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